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Alternative splicing of OAS1 alters the risk for severe COVID-19
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ABSTRACT

A locus containing OAS1/2/3 has been identified as a risk locus for severe COVID-19 among

Europeans ancestry individuals,  with a protective haplotype of ~75 kilobases derived from

Neanderthals. Here, we show that among several potentially causal variants at this locus, a

splice variant of OAS1 occurs in people of African ancestry independently of the Neanderthal

haplotype and confers protection against COVID-19 of a magnitude similar to that seen in

individuals without African ancestry.

MAIN TEXT

The COVID-19 pandemic has haunted the world for over a year.  During this period, several large

international  efforts1–4 have  been  launched to  identify  the  genetic  determinants  of  COVID-19

susceptibility  and  severity.  These  efforts  have  identified  more  than  a  dozen  genomic  regions

associated  with  severe  COVID-19.  However,  the  causal  variants  in  these  regions  are  yet  to  be

identified, hampering our ability to understand COVID-19 pathophysiology. 

When risk haplotypes are long it is more challenging to disentangle causal variants due to

linkage  disequilibrium (LD).  This  is  especially  problematic  for  haplotypes  derived  from

Neanderthals  and  Denisovans  that often  span  several  tens  of  kilobases or  more.  Two  notable

COVID-19 examples are the major risk locus on chromosome 3 (3p21.31) and the OAS1/2/3 locus

on chromosome 12 (12q24.13),  which both  carry haplotypes  of  Neanderthal origin5,6. The  OAS

genes encode enzymes catalyzing the synthesis of short polyadenylates, which activate ribonuclease

L that  in  turn  degrades  intracellular  double-stranded  RNA and  triggers  several  other  antiviral

mechanisms7.  The  protective  Neanderthal-derived  haplotype  confers  ~23%  reduced  risk  of

becoming critically  ill  upon infection  with  SARS-CoV-23.  Supporting  this,  a  recent  Mendelian

randomization study found that increased circulating levels of OAS1 were associated with reduced

risk of very severe COVID-19, hospitalization for COVID-19 and susceptibility to this disease8.

However,  other  evidence  from  a  transcription-wide  association  study,  suggested  a  stronger

association with OAS3 levels3. Thus, efforts are required to disentangle the causal gene, or genes, at

this locus.

The OAS region was identified as a COVID-19 risk locus in association studies1,3 of mainly

Europeans. The protective haplotype is derived from Neanderthals, is ~75 kilobases long and covers

the three genes OAS1/2/36. A candidate causal variant in the region is rs10774671, which falls in a

splice acceptor site of OAS1 and where the protective (G) allele results in a longer and more active

OAS1 enzyme9. However,  this  variant  is  as  associated  with  COVID-19 severity  as  any of  the

hundreds of variants in LD. In European ancestry individuals we find 130 variants co-segregating
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(r2>0.8) with the splice-acceptor variant (Fig. 1a). Thus, further methods are required to disentangle

the causal SNP(s) at this locus. Doing so, could help to identify the causal gene.

One method to better identify causal SNPs at an associated locus is to test associations in

different  ancestries,  particularly  when  these  other  populations  have  different  LD structure  and

shorter haplotypes. Therefore, to examine if we could identify a population with which we could

test  this  variant  independently,  we  investigated  the  presence  of  co-segregating  variants  in

populations in the 1000 Genomes project10. In South Asians, there are 129 such variants and in East

Asian 128 variants. In stark contrast, no variants co-segregate with rs10774671 in Africans at a LD

of r2>0.6 (Fig. 1b). Thus, the African ancestry population offers a possibility to independently test if

rs10774671 is associated with COVID-19 severity.

To test the association of splice acceptor variant rs10774671 in people of African ancestry

with COVID-19 outcomes we  combined five studies that had  assessed COVID-19 severity (UK

BioBank,  Penn Medicine BioBank, Columbia University COVID-19 Biobank, Biobanque Québec

COVID-19 and the VA Million Veteran Program), comprising 1,842 cases and 118,631 controls of

African Ancestry. We found that the rs10774671-G allele conferred a protection against COVID-19

hospitalization  in  this  population  (Fig.  2,  p  =  0.03)  of  similar  magnitude  (OR  =  0.92,  95%

confidence interval [CI]: 0.86-0.99) as in Europeans (OR = 0.89,  95% CI: 0.86-0.93), a population

in which the rs10774671-G allele is less common (35% allele frequency versus 66% among African

ancestry individuals10).  Moreover, we find no evidence of heterogeneity  accross the five studies

(Cochran's Q = 2.00, p = 0.74; I2 = 0.0% [0.0%-58.4%]; τ2 = 0.00 [0.00-0.09], 95% CI in brackets,

see  Methods).  Thus,  rs10774671  is  associated  with  COVID-19  severity independently  of  the

variants with which it is associated in non-African populations.

This observation is compatible with the fact that Neanderthal haplotypes are rare or absent

in African populations11,12 and that ancestral alleles seen in Neanderthals, such as the G allele at

rs10774671, can also exist today as a result of inheritance from the ancestral population common to

both modern humans and Neanderthals.  In the latter case,  such  variants have existed in modern

humans in the order of half a million years ago and therefore co-segregate with different variants

than when they are derived from gene flow from Neanderthals into modern humans that occurred

about  60,000 years ago13.  Here,  we leverage this  fact  to  show that  the ancestral  splice variant,

encoding a longer and more active enzyme9, is responsible for the protective effect associated with

this locus14. These findings provide evidence that the splice-site variant at this locus influences

COVID-19 outcomes by manipulating splicing of  OAS1. Further, this rapid insight highlights the

importance of including populations of different ancestries in genetic association studies and rapidly

sharing data through large, international consortia.
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METHODS

Study participants

Our analysis  pooled hospitalized COVID-19 patients of  African ancestry (n = 1,842)  from  five

cohorts.  The  UK  BioBank  cohort  contained  74  cases  and  9,305  controls,  the  Penn  Medicine

BioBank 114 cases  and 8,901 controls,  the  Columbia  University  Biobank 304 cases  and  2,246

controls, Québec Covid-19 50 cases and 50 controls, and VA Million Veteran Program 1,300 cases

and 98,129 controls. All participants gave appropriate consent and ethical approvals were obtained

from the relevant research ethics boards.

Summary statistics - VA Million Veteran Program 

The VA Million Veteran Program (MVP) is a US-based longitudinal research program investigating

how genes, lifestyle, and military exposures influences health and illness in Veterans, with study

recruitment  commencing  in  201115.  Study  participants  were  genotyped  using  a  customized

Affymetrix Axiom biobank array (the MVP 1.0 Genotyping Array), containing 723,305 variants16.

Imputation  was  performed  to  a  hybrid  imputation  panel  comprised  of  the  African  Genome

Resources  panel  (https://imputation.sanger.ac.uk/?about=1#referencepanels)  and  1000G  v3p5.

COVID-19  cases  were  identified  using  an  algorithm  developed  by  the  VA COVID  National

Surveillance Tool (NST)17. COVID-19-related hospitalizations were defined as hospital admissions

between 7 days before and 30 days after an individual’s positive SARS-CoV-2 test. The association

of hospitalized COVID-19  cases versus all other MVP participants was tested under an additive

logistic  model  and  was  corrected  for  age,  age2,  sex,  age-by-sex,  and  ethnicity-specific  PCs.

Individuals who died before March 1, 2020 were excluded as was one individual from each related

pair.  The  analysis  was  restricted  to  only  African  American  MVP participants  (as  defined  by

HARE18) resulting in 1,300 cases and 98,129 controls. 

Summary statistics - Biobanque Québécoise de la COVID-19

The Biobanque Québécoise de la  COVID-19 (BQC-19) is  a  prospective hospital-based biobank

recruiting patients with proven or suspected COVID-19 (Jewish General Hospital research ethics

board  no.  2020-2137).  Whole  genome  genotyping  was  performed  for  all  participants,  with

imputation  using  the  TOPMed server.  Individuals  with  African  ancestry  were  determined  by

projecting genetic principal components on the 1000G reference panel. Our 50 cases were defined as

patients hospitalized with COVID-19 or who died from the infection. Controls were the 50 other

African ancestry participants, of which 32 had a clinical presentation consistent with COVID-19, but

never had a positive test. An additive logistic regression model with the first 10 genetic principal
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components, age, sex, age2, age-by-sex, and age2-by-sex as covariates was used to determine the

effect of the protective G allele on the risk of being a case.

Summary statistics -  Penn Medicine Biobank 

The Penn Medicine Biobank (PMBB) contains ~60,000 prospectively consented participants,  all

patients of Penn Medicine hospitals, for whom DNA samples have been obtained and on whom

extensive  phenotypic  information  has  been  generated  from the  electronic  health  record  (EHR).

20,079 participants  were  genotyped using  the Illumina  Global  Screening Array (Version 2)  and

further imputed using the TOPMed imputation server. SNPs with a call rate less than 1%, minor

allele frequency less than 1%, or imputation info score less than 0.3 were excluded from further

analysis. To define each ancestral group, principal component analysis was performed after merging

the PMBB data with the 10000 Genomes Project reference dataset using the smartpca module of the

Eigensoft package. We performed quantitative discriminant analysis (QDA) on all samples using the

1000 Genomes Project samples as a training sets to generate ancestry calls for all PMBB samples

included in the analysis. Ultimately 9,015 African-ancestry genotyped samples were identified and

included in our association study. All PMBB participants were followed for SARS-CoV-2 infection

and hospitalization, with COVID-19 infection defined as any patient with a positive SARS-CoV-2

nasal swab or for whom the ICD billing code U07.1 had been coded in the EHR, and with COVID-

19-related hospitalizations defined as the subset of these patients who had been admitted to hospital

in the previous year with U07.1 as the admission diagnosis code, or who had been admitted for

COVID-19-related symptoms as  determined by manual  chart  review.  Association  analyses  were

performed  using  the  Firth  logistic  regression  test  as  implemented  in  REGENIE,  including  as

covariates age, age2, sex, age-by-sex, and the first six ancestry-specific principal components of the

genomic data. The PMBB is approved under Institutional Review Board  of Perelman School of

Medicine at University of Pennsylvania.

Summary statistics -  Columbia University Biobank

The Columbia University COVID-19 Biobank was established in response to the New York City

infection surge in March 2020.  The biobank recruited COVID-19 cases of diverse ancestry among

all patients who were treated at Columbia University Irving Medical Center between March and

May 2020. All cases were diagnosed by positive SARS-CoV-2 PCR test based on nasopharyngeal

samples. The mean age of cases was 62.89 years, and the percentage of females was 43%. DNA of

whole blood samples was extracted using standard procedures and genotyping was performed using

the Illumina Global Diversity Array (GDA) chip. The controls were genotyped using the Illumina

Multiethnic Global Ancestry (MEGA) chip. The analysis of intensity clusters and genotype calls
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were performed in Illumina Genome Studio software; all SNPs were called on forward DNA strand

and standard quality control (QC) filters were applied, including per-SNP genotyping rate > 95%,

per-individual genotyping rate > 90%, minor allele frequency (MAF) > 0.01, and Hardy–Weinberg

equilibrium (HWE) test p-value > 10-08 in controls. The duplicates and cryptic relatedness in the

given cohort were determined and excluded based on the estimated pairwise kinship coefficients >

0.0884.  After  QC,  the  dataset  consisted  of  6,757  individuals  (1,029  cases  and  5,728  controls)

genotyped for 1,096,321 SNPs with overall genotyping rate of 99.9%. The imputation analysis was

performed using TopMed imputation server. A total of 13,439,413 common markers imputed at high

quality  (R2 > 0.8 and MAF > 0.01)  were used in  downstream analyses.  To define  the African

ancestry cluster, we used PCA against 1000 Genomes reference populations followed by k-means

clustering on significant PCs of ancestry. The African ancestry cluster contained 332 cases positive

for SARS-CoV-2 and 2,246 population controls. Of the 332 African ancestry cases, 304 had severe

COVID-19  requiring  hospitalization.  Among  the  304  cases  included,  78  (26%)  had  respiratory

failure requiring intubation and invasive ventilatory support, and 86 (28%) died due to COVID-19.

We then tested the effect of rs10774671-G on the risk of hospitalization using SAIGE (Scalable and

Accurate Implementation of GEneralized mixed model), after adjustment for sex and five principal

components of ancestry. The collection of samples to the Columbia University COVID-19 Biobank

was  approved  by  the  Institutional  Review Board  (IRB)  of  Columbia  University  (IRB protocol

number AAAS7370), while the genetic analyses were approved under Columbia University IRB

protocol number AAAS7948.

Summary statistics -  UK BioBank

Association  analyses  were  performed  using  the  Firth  logistic  regression  test  implemented  in

REGENIE,  including  as  covariates  age,  age2,  sex,  age-by-sex,  age2-by-sex,  and  ten  ancestry-

informative  principle  components.  Association  analyses  were performed using  the  Firth  logistic

regression test implemented in REGENIE, including as covariates age, age2, sex, age-by-sex, age2-

by-sex, and ten ancestry-informative principle components. The data was downloaded at https://rgc-

covid19.regeneron.com/results [2021-02-02].

Meta-analysis

The  meta-analysis  was  done  using  inverse-variance  weighting  in  the  R-package  meta.

Heterogeneity  was  measured  using  Cochran’s  Q,  Higgin’s  &  Thompson’s  I2,  and  τ2 using  the

DerSimonian-Laird estimator. 

Linkage disequilibrium
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Linkage disequilibrium was calculated using LDlink19 4.1 in the genomic region 113.30-113.45 Mb

(hg19) using data from the 1000 Genomes Project10. 
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FIGURES

Fig 1. Linkage disequilibrium of the splice acceptor variant in individuals of European and

African ancestries. A) Linkage decay in individuals European ancestry (n = 503). 130 variants are

in LD (r2 > 0.8) with the splice acceptor variant rs10774671 (marked in red). B) Same as in A) but

for African ancestry (n = 661).  No variants were found to be in LD with the splice acceptor variant.

Data from the 1000 Genomes project10. X-axis gives hg19 coordinates. 
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Fig 2. Odds ratios for COVID-19 hospitalization for African ancestry carriers of the ancestral

splice variant.  Summary effect in African ancestry individuals  by a fixed effect meta-analysis of

the five cohorts. Error bars give 95% confidence intervals.
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